90 research outputs found

    Coordinated NIR/mm observations of flare emission from Sagittarius A*

    Get PDF
    Context. We report on a successful, simultaneous observation and modelling of the millimeter (mm) to near-infrared (NIR) flare emission of the Sgr A* counterpart associated with the supermassive (4 × 10^6 M_☉) black hole at the Galactic centre (GC). We present a mm/sub-mm light curve of Sgr A* with one of the highest quality continuous time coverages. Aims. We study and model the physical processes giving rise to the variable emission of Sgr A*. Methods. Our non-relativistic modelling is based on simultaneous observations carried out in May 2007 and 2008, using the NACO adaptive optics (AO) instrument at the ESO's VLT and the mm telescope arrays CARMA in California, ATCA in Australia, and the 30 m IRAM telescope in Spain. We emphasize the importance of multi-wavelength simultaneous fitting as a tool for imposing adequate constraints on the flare modelling. We present a new method for obtaining concatenated light curves of the compact mm-source Sgr A* from single dish telescopes and interferometers in the presence of significant flux density contributions from an extended and only partially resolved source. Results. The observations detect flaring activity in both the mm domain and the NIR. Inspection and modelling of the light curves show that in the case of the flare event on 17 May 2007, the mm emission follows the NIR flare emission with a delay of 1.5±0.5 h. On 15 May 2007, the NIR flare emission is also followed by elevated mm-emission. We explain the flare emission delay by an adiabatic expansion of source components. For two other NIR flares, we can only provide an upper limit to any accompanying mm-emission of about 0.2 Jy. The derived physical quantities that describe the flare emission give a source component expansion speed of ν_(exp) ~ 0.005c–0.017c, source sizes of about one Schwarzschild radius, flux densities of a few Janskys, and spectral indices of α = 0.6 to 1.3. These source components peak in the THz regime. Conclusions. These parameters suggest that either the adiabatically expanding source components have a bulk motion greater than ν_(exp) or the expanding material contributes to a corona or disk, confined to the immediate surroundings of Sgr A*. Applying the flux density values or limits in the mm- and X-ray domain to the observed flare events constrains the turnover frequency of the synchrotron components that are on average not lower than about 1 THz, such that the optically thick peak flux densities at or below these turnover frequencies do not exceed, on average, about ~1 Jy

    Reflection nebulae in the Galactic Center: the case for soft X-ray imaging polarimetry

    Get PDF
    The origin of irradiation and fluorescence of the 6.4 keV bright giant molecular clouds surrounding Sgr A*, the central supermassive black hole of our Galaxy, remains enigmatic. Testing the theory of a past active period of Sgr A* requires X-ray polarimetry. In this paper, we show how modern imaging polarimeters could revolutionize our understanding of the Galactic Center. Through Monte Carlo modeling, we produce a 4-8 keV polarization map of the Galactic Center, focusing on the polarimetric signature produced by Sgr B1, Sgr B2, G0.11-0.11, Bridge E, Bridge D, Bridge B2, MC2, MC1, Sgr C3, Sgr C2, and Sgr C1. We estimate the resulting polarization, include polarized flux dilution by the diffuse plasma emission detected toward the GC, and simulate the polarization map that modern polarimetric detectors would obtain assuming the performances of a mission prototype. The eleven reflection nebulae investigated in this paper present a variety of polarization signatures, ranging from nearly unpolarized to highly polarized (about 77%) fluxes. A major improvement in our simulation is the addition of a diffuse, unpolarized plasma emission that strongly impacts soft X-ray polarized fluxes. The dilution factor is in the range 50% - 70%, making the observation of the Bridge structure unlikely even in the context of modern polarimetry. The best targets are the Sgr B and Sgr C complexes, and the G0.11-0.11 cloud. An exploratory observation of a few hundred kilo-seconds of the Sgr B complex would allow a significant detection of the polarization and be sufficient to derive hints on the primary source of radiation. A more ambitious program (few Ms) of mapping the giant molecular clouds could then be carried out to probe with great precision the turbulent history of Sgr A*, and place important constraints on the composition and three-dimensional position of the surrounding gas.Comment: 7 pages, 3 figures, 2 tables, accepted for publication in A&

    Conditions for the Thermal Instability in the Galactic Centre Mini-spiral region

    Get PDF
    We explore the conditions for the thermal instability to operate in the mini-spiral region of the Galactic centre (Sgr A*), where both the hot and cold media are known to coexist. The photoionisation Cloudy calculations are performed for different physical states of plasma. We neglect the dynamics of the material and concentrate on the study of the parameter ranges where the thermal instability may operate, taking into account the past history of Sgr A* bolometric luminosity. We show that the thermal instability does not operate at the present very low level of the Sgr A* activity. However, Sgr A* was much more luminous in the past. For the highest luminosity states the two-phase medium can be created up to 1.4 pc from the centre. The presence of dust grains tends to suppress the instability, but the dust is destroyed in the presence of strong radiation field and hot plasma. The clumpiness is thus induced in the high activity period, and the cooling/heating timescales are long enough to preserve later the past multi-phase structure. The instability enhances the clumpiness of the mini-spiral medium and creates a possibility of episodes of enhanced accretion of cold clumps towards Sgr A*. The mechanism determines the range of masses and sizes of clouds; under the conditions of Sgr A*, the likely values come out 11 - 102M⊕10^2M_{\oplus} for the cloud typical mass.Comment: Accepted for publication in MNRAS, 10 pages, 7 figure

    ALMA and VLA Observations: Evidence for Ongoing Low-mass Star Formation near Sgr A*

    Get PDF
    Using the VLA, we recently detected a large number of protoplanetary disk (proplyd) candidates lying within a couple of light years of the massive black hole Sgr A*. The bow-shock appearance of proplyd candidates point toward the young massive stars located near Sgr A*. Similar to Orion proplyds, the strong UV radiation from the cluster of massive stars at the Galactic center is expected to photoevaporate and photoionize the circumstellar disks around young, low mass stars, thus allowing detection of the ionized outflows from the photoionized layer surrounding cool and dense gaseous disks. To confirm this picture, ALMA observations detect millimeter emission at 226 GHz from five proplyd candidates that had been detected at 44 and 34 GHz with the VLA. We present the derived disk masses for four sources as a function of the assumed dust temperature. The mass of protoplanetary disks from cool dust emission ranges between 0.03 -- 0.05 solar mass. These estimates are consistent with the disk masses found in star forming sites in the Galaxy. These measurements show the presence of on-going star formation with the implication that gas clouds can survive near Sgr A* and the relative importance of high vs low-mass star formation in the strong tidal and radiation fields of the Galactic center.Comment: 13 pages, 3 figures, MNRAS (in press
    • …
    corecore